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INVESTIGATION OF AN AFIXRBUR%tNG RAMJGP USING GASEOUS 

HYDROGEN AS FUEL A T  MACH NUMBER OF 3.0' 

By Joseph F. Xasaerbauer 

An experimental investigation was conducted i n  the  Lewis 10- by 10- 
foot supersonic wind tunnel on a 16-inch ramjet that was equipped with 
an  afterburner and used gaseous hydrogen for  both the primary and af'ter- 
burner fuels. The primary nozzle had a contraction r a t i o  of 0.6 w h i l e  
the e x i t  nozzle had a contraction r a t i o  of 0.9. D a t a  were obtained at  a 
fk-ee-stream Mach number of 3.0 and zero angle of a t tack.  

The r e s u l t s  of this investigation i l l u s t r a t e  t h a t  a t  a constant 
c diffuser-exi t  Mach number afterburner operation produces more than 

twice the  thrus t  available without af'terburning. An over-all  can- 
bustion eff ic iency of ?? percent with a specif ic  f ie1 consumption of 
0.98 and a specif ic  impulse of 3680, based on net i n t e rna l  th rus t ,  
was obtained with af'terburning. 

I"I!RODUCTION 

Successful af'terburning i n  a 16-inch ramjet with la rge  th rus t  in -  
creases without the necessity of exit nozzle-throat area var iat ion was 
reported i n  reference 1. However, the canbustion eff ic iency was ra ther  
low. 
i n  the  tests of reference 1, and it was concluded that i n  order t o  make 
the ramjet afterburner prac t ica l ,  fuels having greater  react ion rates 
and burning with higher e f f ic ienc ies  are necessary. Recent work with 
hydrogen (refs. 2 and 3) indicates tbat t h i s  fue l  might provide the an- 
s w e r  t o  a prac t ica l  afterburning ramjet. 

Propylene oxide was used as both the primary and afterburner fue ls  

An investigation was therefore undertaken t o  evaluate the  perfom- 
ance of a hydrogen-fuel ramjet equipped with an afterburner.  The in- 
vest igat ion was conducted i n  the Lewis 10- by 10-foot supersonic wind 
tunnel a t  a f'ree-stream Mach number of 3.0 ana zero angle of sttack. 
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The engine was a 16-inch-diameter ramjet preyiously used in the study of 
hydrogen as a primary burner fuel (ref. 3). 
presented and discussed herein. 

The results obtained are 

&ax 

'Fn 

Fn 

f /a 

2 

M 

P 

P 

so 
sfc 

X 

4 1  

Wf 

'IB 

SyMBOrs 

maximum frontal area of model (16-in. diam.) 

net-internal-thrust coefficient (based on max. model area), 

net internal thrust (exit momentum - tree-stream momentum) 
f'uel-air ratio 

FXl/%X 

length of diverging section of primary nozzle 

Mach number 

total pressure 

static pressure 

free-stream dynamic pressure .. 
specific fie1 consumption based on net internal jet t h r u s t ,  wf/F, 

static tube location on diverging section of primary nozzle 

ratio of static-pressure tube location to over-all length of 
diverging section of primary nozzle" 

fie1 flow, lb/h.r 

Final enthaply - Initial enthalpy 
Available heating value combustion efficiency, 
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APPARArn AND mocmm 
A schematic diagram of the 16-inch-diameter ramjet engine equipped 

with the afterburner used i n  t h i s  investigation is  shown i n  figure 1. 
Also i l l u s t r a t e d  i s  a cross section of the ramjet showing the  primary 
nozzle and afterburner fue l  in jec tors .  The tests w e r e  conducted i n  the 
Lewis 10- by 10-foot supersonic wind tunnel a t  a free-stream Mach nun- 
ber of 3.0 and zero wg le  of attack zt 8 sqrnldnted. pressure a l t i t u d e  of 
71,000 feet. The tunnel t o t a l  temperature was 664OM0 R.  

The supersonic i n l e t ,  subsonic diffuser,  and prlmary iq jec tor  are 
the sane as those of reference 3.  The afterburner iq jec tors ,  which had 
an a i r f o i l  cross section, w e r e  located 0.50 inch downstream of the  
converging-diverging primary nozzle. E i g h t  in jec tors  of two d i f fe ren t  
lengths were placed 450 apart .  For same of the  tests the large injec-  
t o r s  were removed. 
while the  afterburner-exit  nozzle had a contraction r a t i o  of 0.9. The 
primary nozzle was sharp-edged a t  the throat section with a 150 diver- 
gent angle. The length of the primary cambustor was 26.75 inches meas- 
ured f r o m  the point of fue l  in jec t ion  t o  the  beginning of the  converging 
section of the  primary nozzle. The length of the afterburner was 25.75 
inches measured from the end of the diverging section of the primary 
nozzle t o  the beginning of t he  e x i t  nozzle. 
during the operation. 
afterburner since the source of ignit ion of the afterburner fue l  was the 
hot gas from the primary combustor. 

The primary nozzle bad a contraction r a t i o  of 0.6 

Neither length was varied 
A spark plug was not needed fo r  igni t ion i n  the 

Fuel fo r  the primary burner was ducted through the centerbody, 
and, f o r  convenience i n  fabrication, fuel  for  the afterburner was in t ro-  
duced through a system of pipes located outside the model {fig. 1). 
photograph of the ramjet afterburner and fuel system i s  shown i n  f igure 
2 .  
sure of 2400 pounds per square inch gage. Fuel was taken d i rec t ly  from 
the  storage cylinders through a pressure-reducing valve, two metering 
o r i f i ce s  {for afterburner and primary fue l  flows), and a th ro t t l i ng  
valve t o  the engine. 

A 

The hydrogen fue l  was stored a s  a gas i n  cylinder tanks a t  a pres- 

Mass flow entering the inlet was calculated i n  the same manner a s  
reported i n  reference 3 .  
ured a t  the pressure survey rake s ta t ion indicated on figure 1. E x i t  
t o t a l  pressure was measured with a water-cooled t a i l  rake located imme- 
d i a t e ly  a f t e r  the exhaust nozzle. Net i n t e rna l  th rus t  (exit mmentum 
minus ftree-stream momentum) was then calculated earn  the  e x i t  t o t a l  
pressure.  The e x i t  t o t a l  temperature was a l so  calculated f i a m  the meas- 
ured e x i t  t o t a l  pressure aiiZ cc:tir?cit;r relnt . inn.  Cmbustion efficiency 
T ) ~  was calculated flram the enthalpy rise of the  gas through the primary- 
za5ust,or and afterburner sections divided by the  available heat content 
of the f'uel. 

Diffuser s t a t i c  and t o t a l  pressures were meas- 



In t h e  method used f o r  calculat ing vB, no account w a s  made of 
changes i n  gas properties accompanying combustion eff ic iencies  less than 
100 percent. A check using a more refined procedure indicates t h a t  
burner e f f ic ienc ies  would appear somewhat lower than those presented. 
For example, a t  a recorded burner eff ic iency of 74 percent, calculat ion 
by the refined method would reduce t h e  apparent eff ic iency t o  70.5 per- 
cent.  T h i s  apparent e r ror  i n  vB would increase i n  proportion t o  the  
decrease i n  calculated vB below 100 percent. However, compensating 
errors  due t o  thermal expansion of t h e  nozzle-discharge area and t o  heat 
losses through the  engine she l l  were not included i n  the  analysis.  
Hence, t he  combustion eff ic iencies  presented are believed more represent- 
a t ive  than those tha t  would be obtained from the  refined analysis.  

A static-pressure survey of t h e  gas flowing in to  the  afterburner 
w a s  made on the  diverging s ide of t h e  primary nozzle ju s t  after t h e  p r i -  
mary throat as shown i n  f igure 1. 

During afterburner operation the  i n l e t  w a s  maintained a t  t he  same 
operating point by sensing t h e  normal shock by means of a backward-facing 
total-pressure probe located 6.5 inches downstream of t h e  cowl l i p .  The 
shock position w a s  regulated by varying t h e  primary-burner f u e l  flow as 
afterburner f u e l  flow w a s  varied. 

RESULTS AND DISCUSSION 

The diffuser  performance of t he  16-inch ramjet engine equipped with 
an afterburner i s  the  same as t h a t  reported i n  reference 3. The i n l e t  
operating point (M3 = 0.185; P2/Po 2 0.50) w a s  held s l i gh t ly  supercr i t i -  
c a l  f o r  convenience i n  avoiding buzz. 

I n  reference 1 afterburner operation w a s  accomplished by keeping the  
diffuser conditions constant. However, i n  order t o  keep a constant d i f -  
fuser  operating condition during t h e  present test ,  t he  primary-combustor 
f u e l  f l o w  had t o  be varied because the  primary nozzle appeared t o  be un- 
choked. Since the  presence of t h e  afterburner f u e l  in jec tors  might ac- 
count f o r  t h i s ,  tests were made with t h e  four large in jec tors  removed. 
Data showing the  resul t ing w a l l  s t a t i c  pressures measured i n  the  diver- 
gent part  of t h e  nozzle a re  presented i n  f igure  3. For t he  no-burning 
case ( f ig .  3 (a) ) ,  it appears t h a t  t h e  primary nozzle i s  choked with the  
flow probably separated. 
removal of t h e  large injectors ,  occurred near t h e  end of t h e  diverging 
section. With t h e  primary burner i n  operation ( f i g .  3(b) ) , removal of 
t h e  large afterburner in jec tors  appears t o  have a marked e f f ec t  i n  reduc- 
ing t h e  w a l l  s t a t i c  pressure. 
t he  primary nozzle i s  unchoked at  t h e  high afterburner fue l -a i r  r a t i o s  
and probably at the  low fue l -a i r  r a t io s .  

A r ise  i n  s t a t i c  pressure, which w a s  reduced by 

During afterburner operation ( f i g  . 3( c)  ) , . 

Again, t h e  removal of t h e  large 
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injectors  reduced the  w a l l  s t a t i c  pressure at  both the high and low fue l -  
a i r  r a t io s .  The wall s t a t i c  pressures were constant along the length f o r  
the high and low afterburner fue l -a i r  ra t ios  w i t h  the  large injectors  
removed. A possible explanation of th i s  might be propagation and burning 
of the afterburner fue l  forward into the separated region of the  nozzle. 

I n  reference 1 the diffuser-exit  Mach number was s l igh t ly  reduced 
as the afterburner f u e l  flow was increased, probably because of the 
method of zfterhl_Lrner fue l  injection. I n  t h i s  investigation the e f fec t  
was more pronounced even though f u e l  was not injected ahead of thc - 3 -  - 
mary nozzle. 
diffuser  operating condition constant v h i k  imreaslng afterburner f u e l  
flow. Large increases i n  net internal  thrust  were obtained with a f t e r -  
burner operation. 

The primary fue l  flow was decreased i n  order t o  keep the 

The net-internal-thrust  coefficient w i t h  and without ramjet a f te r -  
burning i s  shown i n  figure 4. For primary-burner operation only, the  
data were obtained with the afterburner configuration cut off a t  the 
primary nozzle throa t  i n  order t o  measure the t o t a l  pressure a t  this 
point.  
internal- thrust  coefficient of nearly 0.6 a t  the diffuser-exi t  Mach num- 
ber used for  operation of the afterburner. 

Operation with only the primary burner and nozzle gave a net- 

For  afterburner operation the net-internal-thrust coeffieient in -  

Even greater increases i n  
creased f r o m  0.6 t o  1.285. This i s  more -than tk ice  the t .bist available 
with only the primary burner i n  operation. 
thrust can be real ized with the employment of larger  e x i t  nozzles. 

Variations of fuel-air  r a t i o ,  combustion efficiency, and specific 
f ie1 consumption with the net-internal-thrust coefficient fo r  these data 
are shown i n  figure 5. 
coeff ic ient  of 0.6 reached corresponds t o  a combustion efficiency of 83 
percent and a specific fuel consumption of 0.84 (based on net in te rna l  

Without afterburner operation the peak thrust 

thrust). 

During afterburner operation, a peak combustion efficiency of 77 
percent was achieved with an increase i n  thrust coefficient of 83 per- 
cent a t  t h i s  point i n  afterburner operation. 
fuel consumption was 0.98. 
ing fue l -a i r  r a t i o )  resulted i n  a thrust increase of more than twice 
that obtained without afterburning but a t  reduced combustion efficiency 
and higher specific fue l  consumption. The drop i n  burning efficiency 
a t  the higher thrust levels  can be largely a t t r ibu ted  t o  the reduced 
temperatures a t  the primary nozzle necessary t o  keep the i n l e t  a t  the 
desired operating point. 

The corresponding specif ic  
Further increases i n  heat addition (increas- 
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It is  of i n t e re s t  t o  cumpare the  specif ic  impulse (based on net 
internal  t h rus t )  of a booster rocket t o  t h a t  of t h e  ramjet afterburner.  
For the  ramjet afterburner a maximum spec i f ic  impulse of 3680 was ob- 
tained as compared with a representative value of about 300 f o r  a 
booster rocket. 

Although the  mode of operation w a s  not as described i n  reference 1 
because of unchoking of t he  primary nozzle, it w a s  demonstrated t h a t  t he  
ramjet afterburner can e f f i c i en t ly  provide large th rus t  increases.  If a 
way could be found t o  avoid t h i s  unchoking, higher over-al l  combustion 
eff ic iencies  could be at ta ined a t  m a x i m u m  th rus t ,  and the  problem of 
scheduling primary fue l - a i r  r a t i o  with th rus t  l eve l  could be eliminated. 

SUMMARY OF RESULTS 

The following results were obtained during an invest igat ion i n  the  
Lewis 10- by 10-foot supersonic wind tunnel a t  a Mach number of 3.0 of 
ramjet afterburning with gaseous hydrogen as fuel. 

1. A t  a constant diffuser-exi t  Mach number afterburner operation 
produced more than twice the  thrust avai lable  as compared t o  operation 
without afterburning. - 

2. Over-all combustion e f f ic ienc ies  as high as 77 percent were ob- 
ta ined with af'terburning. 

3. With afterburning a specif ic  f ie1 consumption of 0.98 and a 
spec i f ic  impulse of 3680, based on net i n t e rna l  t h rus t ,  w e r e  obtained. 

L e w i s  Flight Propulsion Laboratory 
National Advisory Committee for  Aeronautics 

Cleveland, Ohio, A p r i l  1, 1957 
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Figure 4. - Variation of net-thrust coefficient 
with and without afterburning. 
fuel injectors present. 

All afterburner 
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0 Primary nozzle only 
Afterburner operation 
S o l i d  symbols denote total fuel flow; 
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Figure 5. - Variation of net-internal-thrust coefficient wlth fuel-air ratio, com- 
bustion efficiency, and specific fuel consumption. All afterburner injectors 
present. 
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